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This article elucidates and analyzes the fundamental underlying structure of the renormalization group �RG�
approach as it applies to the solution of any differential equation involving multiple scales. The amplitude
equation derived through the elimination of secular terms arising from a naive perturbation expansion of the
solution to these equations by the RG approach �L.-Y. Chen, N. Goldenfeld, and Y. Oono, Phys. Rev. E 54, 376
�1996�� is reduced to an algebraic equation which is expressed in terms of the Thiele semi-invariants or
cumulants of the eliminant sequence �Zi�i=1

� . Its use is illustrated through the solution of both linear and
nonlinear perturbation problems and certain results from the literature are recovered as special cases. The
fundamental structure that emerges from the application of the RG approach is not the amplitude equation but
the aforementioned algebraic equation.
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I. INTRODUCTION

The method of renormalization group �RG� �1� as a means
of eliminating secular terms that arise in the naive expansion
of the solution of differential equations has had remarkable
success during the past decade in generating asymptotic so-
lutions to problems that were unwieldy to integration to
higher orders and which had previously been attacked by
methods that fit the particular problems, such as the method
of multiple scales for oscillators, matched asymptotic expan-
sions for boundary layer problems, etc. The development of
the RG method continued in Ref. �2� by introducing an ap-
proach based on the classical theory of envelopes to setting
its mathematical foundations. Many authors have attempted
to provide additional explanations for the mathematical
framework underlying the technique. Its relation to the
method of averaging was elucidated in a series of papers
�3,4�. Lie-group approaches were developed �5� to simplify
the process of deriving asymptotic solutions employing
translational symmetry generators, and later applied to pulse
dynamics �6�. An interesting approach was introduced in
�7,8� to simplify the derivation of amplitude equations. De-
spite the merit of these later efforts, the RG method has not
reached a degree of simplicity that will make it approachable
and accessible to wider audiences, while the mechanism be-
hind its spectacular successes has not been elucidated yet.

In this paper, departing from the developments in �1,7�,
we show that the amplitude equations derived through the
standard RG approach can actually be integrated and thus
provide an algebraic relation that, for a nonlinear problem,
defines the amplitude implicitly, while for a linear problem
leads to the actual asymptotic solution, circumventing the
necessity of performing the process of renormalization. Fur-
thermore, no further integrations are required. This finding is
an important step in the demystification of the method and
hopefully will provide a suitable impetus for the application
of the method to other areas of statistical mechanics and field
theory that use perturbative expansions but suffer from the
presence of nonuniformities.

In Sec. II A we introduce the reader to the standard
method of renormalization group with a most simple ex-
ample: To facilitate the transition into the formalism intro-
duced in this paper. In Sec. II B we introduce the main equa-
tions of this paper and show that the eliminant sequence
�Zi�i=1

� and the integral of the RG equation bear the same
relationship as the moments have with the cumulants or
Thiele semi-invariants �9,10� in statistical theories. Mere
knowledge of the eliminant sequence provides the algebraic
relation and the RG �amplitude� equation without any further
effort. This is a general characteristic of the RG approach,
and applies to all types of differential equations. Further-
more, we emphasize the fact that, from a differential equa-
tions point of view, the fundamental quantity in any RG
analysis must be the algebraic relation and not the amplitude
equation �a differential equation�. The latter is just a means
of solving the former, invoking the implicit function theo-
rem.

In Sec. III, a further simplification of the process of de-
riving the asymptotic solution by the RG method is achieved
for the case of linear equations. The asymptotic solution can
be expressed in terms of the cumulants of the secular se-
quence �yip�i=1

� . Mere knowledge of the latter provides the
asymptotic solution without renormalizing the constants or
integrating an amplitude equation. The algebraic relation
here is linear in the amplitude, thus providing the justifica-
tion for this simplification. We illustrate the application of
the method with a few examples, of ascending difficulty,
starting, for pedagogical purposes, with a linear oscillator
with constant coefficients, continuing with linear oscillators
with variable coefficients, linear eigenvalue problems, such
as the linear anharmonic oscillator �11,12�, and a boundary-
layer problem.

In Sec. IV, the formalism is applied to the case of nonlin-
ear differential equations such as the Rayleigh and Duffing
equations. In the process we see that the aforementioned im-
plicit relation defining the amplitude provides its phase with-
out any extra effort.
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II. DERIVATION OF THE FIRST INTEGRAL OF THE
AMPLITUDE EQUATION

The results to derive in this section are general and apply
to both linear and nonlinear ordinary differential equations
characterized by a perturbing parameter �. In order to moti-
vate the discussion and provide access to a wider array of
audiences, we demonstrate the method by use of a linear
oscillator problem. Standard nonlinear problems that have
been analyzed in detail with the standard method of renor-
malization group �1,7� can be treated with this formalism and
appear in Sec. IV.

A. Analysis of a problem with the standard RG method

Consider the second order linear ordinary differential
equation

ÿ − �ẏ + y = 0, � → 0 + . �1�

The negative damping has been chosen intentionally. A naive
perturbation expansion

y = y0 + �y1 + �2y2 + ¯ , �2�

leads to the following hierarchy of equations:

ÿ0 + y0 = 0, �3�

ÿn + yn = ẏn−1, n � 1. �4�

The solutions of the above equations are

y0 = Aeit + A�e−it, �5�

which is the solution whose constants A ,A� we will eventu-
ally renormalize, and

y1 =
1

2
Ateit + c.c.,

y2 =
1

8
A�t2 − it�eit + c.c.,

y3 =
1

16
A� t3

3
− it2�eit + c.c.,

y4 =
1

64
A� t4

6
− it3 −

t2

2
−

i

2
�eit + c.c., �6�

are the particular solutions of the higher order equations.
Thus

y1p =
1

2
t, y2p =

1

8
�t2 − it�, y3p =

1

16
� t3

3
− it2�, . . . ,

�7�

where A is a constant complex amplitude. We call the se-
quence �yip�i=1

� the “secular sequence” and the series yp= �1
+�y1p+�2y2p+O��3�� the “secular series.” In the standard
RG approach �1,7�, the time variable appearing in each term
of the secular series is split as t= �t−��+�, t2= �t2−�2�

+�2 , . . . and then the terms � ,�2 , . . . are absorbed into the
renormalization constant Z of the free parameter A in the
sense that A=A���Z or explicitly in the form of a slowly
varying amplitude

A = A����1 + �Z1��,A� + �2Z2��,A� + O��3�� , �8�

where we call �Zi�i=1
� the “eliminant sequence.” One then

substitutes the above form for the free parameter A into the
particular solutions �6� and determines the Zi arising in each
order in � of the zeroth order solution in Eq. �5�, i.e.,

y0 = A����1 + �Z1��,A� + �2Z2��,A� + O��3��eit + c.c.,

�9�

by comparing with the corresponding expressions one ob-
tains when the expanded form of A is substituted into the
higher order particular solutions of Eq. �6�. For example, it is
straightforward to derive the first three members of the elimi-
nant sequence as

Z1 = −
�

2
, Z2 =

1

8
�2 +

i

8
�, Z3 = −

1

16
� �3

3
+ i�2� .

�10�

The amplitude equation is obtained by differentiating Eq. �8�
with respect to the parameter � �1,7�, and equating � with
time t

dA
dt

= − A�	dZ1

dt
+ ��dZ2

dt
− Z1

dZ1

dt
�
 + O��3� . �11�

Performing the required differentiations of the terms in the
eliminant sequence and substituting into Eq. �11�, we obtain

dA
d�

= − �A�−
1

2
+ �

i

8
� + O��4� . �12�

This is the celebrated amplitude equation associated with the
oscillator �1�. Despite the significance of the above result, its
derivation relied on secondary parameters such as � and re-
quired a process of elimination that, although unambiguous,
becomes unwieldy in higher orders of approximation. Fur-
thermore, despite its important role in extracting global fea-
tures, it is not immediately obvious how to integrate the am-
plitude equation �especially in the case of a nonlinear
equation�. These topics are discussed in the subsequent sec-
tions.

B. Reduction of the amplitude equation and main equations

In this section we show that the amplitude Eq. �11� pos-
sesses a first integral. For nonlinear equations in some cases
�but not all� the complete solution is provided. This is the
case when this method is applied to the Duffing equation. In
the next section we also show that, for linear equations, the
process of renormalization is not required to derive the am-
plitude equation or its solution. Both results are based in the
construction that follows.

As discussed above briefly, the standard RG approach
�1,7� commences by introducing a near-identity transforma-
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tion in the form of a slowly varying amplitude �8� that will
subsequently absorb any secular terms that may appear in the
asymptotic expansion of the solution. The amplitude equa-
tion is obtained by noting that A is a constant and thus dif-
ferentiating with respect to the fictitious parameter � and
equating with the time t �1� or, equivalently, eliminating the
parameter � characterizing the family of asymptotic solutions
in favor of their envelope �2� leads to the following differ-
ential equation for the slowly varying amplitude A which, in
an expanded form, reads

dA
dt

= − A�	dZ1

dt
+ ��dZ2

dt
− Z1

dZ1

dt
� + �2�dZ3

dt
− Z1

dZ2

dt

− Z2
dZ1

dt
+ Z1

2dZ1

dt
� + �3�dZ4

dt
+ �2Z1Z2 − Z3 − Z1

3�
dZ1

dt

+ �dZ2

dt
�Z1

2 − Z2� − Z1
dZ3

dt
��
 + O��5� . �13�

However, it is apparent that the above equation has a first
integral which obtains the form

ln A = ln A�0� − �Z1 − �2�Z2 −
Z1

2

2
� − �3�Z3 − Z1Z2 +

Z1
3

3
�

− �4�Z4 − Z1Z3 −
Z2

2

2
+ Z1

2Z2 −
Z1

4

4
� + O��5� . �14�

The various terms multiplying the powers of � are the Thiele
semi-invariants �9,10� or cumulants of the sequence �Zi�i=1

�

and their analytical form to any order is tabulated in the
Appendix.

Relation �14� is a consequence of the structure of the stan-
dard RG method �1� and its derivation relies on secondary
parameters. However, the result �14� can be derived without
resorting to these additional parameters. Instead, introducing
a near-identity transformation of the form

A = A�t��1 + �Z1�t,A� + �2Z2�t,A� + O��3�� �15�

and determining the sequence �Zi�i=1
� through standard renor-

malization, we proceed by taking the natural logarithm of
both sides of the above expression while simultaneously set-
ting A=A�0�, since A is a constant. This process immedi-
ately leads to the fundamental result �14� directly from the
definition of the cumulants in the Appendix.

The amplitude equation �13� is just a means of calculating
the amplitude that arises in the implicit Eq. �14�. The alge-
braic relation �14� is the fundamental outcome of the RG
approach to differential equations. More precisely, to solve
for A�t� in Eq. �14�, one resorts to the implicit function theo-
rem. If the conditions of the theorem are satisfied, then im-
plicit differentiation can be applied that leads to Eq. �13� and
as a consequence to an explicit form for A�t�.

C. Application to the linear oscillator

The application of Eq. �14� to the linear oscillator of Sec.
II A is straightforward. Knowledge of the eliminant sequence
�Zi�i=1

� calculated in Eq. �10� leads to the solution of the
amplitude equation in the form

ln A = ln A�0� +
�t

2
− i

�2

8
t − i

�4

128
t + O��5�

or A = A�0�e�t/2+i�−�2/8−�4/128�t+O��5�. �16�

The amplitude equation can be recovered from the first of the
two above expressions. Application of relation �14� to non-
linear equations is taken over in Sec. IV. As far as linear
equations are concerned, both the amplitude equation and its
first integral can be determined by mere knowledge of the
secular sequence �yip�i=1

� circumventing the need to perform
renormalization. This route is taken over in the next section.

III. SOLUTION OF LINEAR EQUATIONS BY MEANS OF
AN IMPROVEMENT OF ALGEBRAIC RELATION

(14)

For a linear differential equation, there is a certain rela-
tionship between the secular sequence �yip�i=1

� and the elimi-
nant sequence �Zi�i=1

� ,

Z1 = �− 1�y1p,

Z2 = �− 1�2y1p
2 − y2p,

Z3 = �− 1�3y1p
3 + 2�− 1�2y1py2p − y3p,

] = ] ,

whereby their respective cumulants are also related:

Z1 = − y1p,

Z2 −
Z1

2

2
= − �y2p −

y1p
2

2
� ,

Z3 − Z1Z2 +
Z1

3

3
= − �y3p − y1py2p +

y1p
3

3
� , �17�

] = ] . �18�

Thus the algebraic relation �14� characterizing A obtains the
form

ln A = ln A�0� + �y1p + �2�y2p −
y1p

2

2
� + �3�y3p − y1py2p

+
y1p

3

3
� + �4�y4p − y1py3p −

y2p
2

2
+ y1p

2 y2p −
y1p

4

4
�

+ O��5� . �19�

The solution in this case is automatically found by mere
knowledge of the secular polynomials �yip�i=1

� , without re-
sorting to the amplitude equation or performing renormaliza-
tion. Relation �19� provides the RG amplitude to any linear
differential equation. We illustrate these results with a se-
quence of problems of ascending difficulty.
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A. Linear oscillator revisited

To determine the asymptotic solution of Eq. �1�, we only
need knowledge of the secular sequence �yip�i=1

� . From Sec.
II A, its first three members are

y1p =
1

2
t, y2p =

1

8
�t2 − it�, y3p =

1

16
� t3

3
− it2�, . . . .

Calculating the cumulants

�1 � y1p =
1

2
t, �2 � y2p −

y1p
2

2
= −

1

8
it,

�3 � y3p − y1py2p +
y1p

3

3
= 0, . . . �20�

of the secular sequence and substituting into the algebraic
expression �19� leads to the first integral of the amplitude
equation in the form �16�. Thus it was obtained without us
performing the process of renormalization.

For completeness, we calculate the asymptotic solution to
Eq. �1�. The general �asymptotic� solution y�t ;��=Aeit

+A�e−it of Eq. �1� becomes

y�t;�� = A�0�e�t/2+i�1−�2/8−�4/128�t + A��0�e�t/2−i�1−�2/8−�4/128�t.

�21�

One can compare the RG solution �21� with its closed form
counterpart

y�t� = e�t/2�Ceit/2�4−�2
+ C�e−it/2�4−�2

� . �22�

For small �, �4−�2=2�1− 1
2 �� /2�2− 1

8 �� /2�4+O��6��. Substi-
tuting into Eq. �22� we exactly recover the renormalization
group solution �21�.

B. Linear equations with variable coefficients

Consider the linear oscillator with forcing k=1−�t. If k
�0, �t�1, the forcing is restoring and brings the system
back to equilibrium. Otherwise, when k�0, �t�1, the forc-
ing becomes increasingly repelling. This behavior should be
captured in the asymptotic solution of the problem

ÿ + y = �ty, y�0� = 1, y��0� = 0. �23�

A power series expansion of the solution in terms of � leads
to the hierarchy of equations

ÿ0 + y0 = 0, �24�

ÿn + yn = tyn−1, n � 1. �25�

The corresponding solutions are

y0 = Aeit + A�e−it, �26�

y1 = −
1

4
A�it2 − t�eit + c.c., �27�

y2 = A�−
1

32
t4 − i

5

48
t3 +

5

32
t2 +

5i

32
t�eit + c.c. �28�

After a straightforward calculation of the cumulants of the
sequence �yip�i=1

� , the algebraic expression for the first inte-
gral �19� reads

ln A = ln A�0� + �
1

4
�− it2 + t� + �2	t2/8 + i� 5t

32
−

t3

24
�


+ O��3� , �29�

and the renormalization group solution of the differential
equation in Eq. �23�

y�t;�� = e�t/4+�2t2/8�A�0�ei�t−�t2/4+�2�5t/32−t3/24��

+ A��0�e−i�t−�t2/4+�2�5t/32−t3/24��� . �30�

Employing the initial conditions, leads to

A�0� =
1

2
+ i

�/8
1 + �2 5

32

, �31�

and the solution of the initial value problem �23� in the form

y�t;�� = e�t/4+�2t2/8�cos ��t;��t −
�/4

1 + �2 5
32

sin ��t;��t� ,

�32�

where

��t;�� = 1 − �
t

4
+ �2� 5

32
−

t2

24
� . �33�

We note that the above solution agrees with the one derived
in �1�, if we only retain terms of first order in �. Second, the
unboundedness of the solution, due to the repelling force, is
reflected in the leading exponent in Eq. �32� when �t�1.

C. Linear eigenvalue problems: The quantum mechanical
anharmonic oscillator

We consider the time-independent Schrödinger equation

�−
d2

dx2 +
1

4
x2 +

1

4
�x4 − E����	�x� = 0 �34�

for the ground-state wave function 	�x�, subject to 	�x
= ±��=0. Normally, the above problem is solved with con-
ventional weak-coupling Rayleigh-Schrödinger perturbation
theory, representing the eigenfunction and eigenvalue as a
power series in �

	�x� = 

n=0

�

�nyn�x�, E��� = 

n=0

�

�nEn. �35�

The above is an asymptotic series. In �11�, Bender and Wu
showed that the solution consists of the ground-state wave
function of the harmonic oscillator as a zeroth order approxi-
mation, y0=Ae−x2/4, E0=1 /2, while the higher order approxi-
mations are expressed through a sequence of polynomials
Pn�x� that satisfy the recursion formula
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d2Pn�x�
dx2 − x

dPn�x�
dx

=
1

4
x4Pn−1�x� − 


j=0

n−1

Pj�x�En−j . �36�

These polynomials can be expressed in closed form as

Pn�x� = 

k=1

2n

Cn,k�−
1

2
x2�k

, �37�

where P0=1, while the eigenvalues and the constants Cn,k are
expressed through another recursion relation. The first few
higher order polynomials read �12�

P1�x� = −
3

2
� x

2
�2

− � x

2
�4

,

P2�x� = −
21

4
� x

2
�2

+
31

8
� x

2
�4

+
13

6
� x

2
�6

+
1

2
� x

2
�8

, . . . , �38�

while the corresponding cumulants are �13�

�1 = P1�x� = −
3

2
� x

2
�2

− � x

2
�4

,

�2 = P2�x� − P1
2�x�/2 =

21

4
� x

2
�2

+
11

4
� x

2
�4

+
1

3
� x

2
�6

, . . . .

�39�

The sequence of polynomials �Pi�i=1
� corresponds to the secu-

lar sequence �yip�i=1
� in our notation that multiply the funda-

mental solution e−x2/4 �compare with the fundamental solu-
tion eit of the oscillators in the previous two examples�. As a
consequence of the fact that the problem �34� is linear, the
algebraic relation �19� leads to

ln A = ln A�0� + �P1 + �2�P2 − P1
2/2� + O��2� , �40�

the amplitude

A = A�0�e�P1+�2�P2−P1
2/2�+O��2�, �41�

and the asymptotic wave-function

	�x;�� = A�0�exp�−
x2

4
+ 


n=1

�

�n�n�x�� , �42�

where ��i�i=1
� is the sequence of cumulants, as these are de-

fined in the Appendix.
We note that the above solution is not new. Kunihiro �13�

derived this expression by means of a process of differentia-
tion and elimination of parameters that arose in his scheme
of generating the envelope of a family of �asymptotic� solu-
tions to the Schrödinger equation. We demonstrated here that
the appearance of the cumulants in �13� is a result of the
structure of the RG approach, embodied in the algebraic re-
lation �19�, rather than being a special characteristic of the
Bender-Wu perturbation theory.

D. Linear boundary-layer problems

The standard RG approach �1� introduces scaled variables
prior to the solution of boundary layer problems. This was
shown not be necessary in �7� if an alternative method is
employed. Our construction will follow �1� by means of a
dominant balance process.

Consider the linear boundary layer problem with constant
coefficients

a�
d2y

dt2 + b
dy

dt
+ y = 0. �43�

We assume that b /a�0. A dominant balance analysis shows
the existence of a boundary layer of thickness � near the
origin. Introducing the inner variables x=�X, y�x�=Y�X�, we
can express the above equation in the form

a
d2Y

dX2 + b
dY

dX
+ �Y = 0. �44�

Employing a naive asymptotic expansion of the solution gen-
erates the following hierarchy of equations

a
d2Y0

dX2 + b
dY0

dX
= 0, �45�

a
d2Yn

dX2 + b
dYn

dX
= − Yn−1, n � 1, �46�

and corresponding particular solutions

Y0 = A + Be−�b/aX�,

Y1 = �−
1

b
A +

1

b
Be−�b/aX��X ,

Y2 = A� X2

2b2 −
a

b3X� + B� X2

2b2 +
a

b3X�e−�b/aX�. �47�

For the part of the solution associated with the constants A
and B, the expression for the first integral of the amplitude
�19� leads to

ln A = ln A�0� + �Y1A + �2�Y2A −
Y1A

2

2
� ,

ln B = ln B�0� + �Y1B + �2�Y2B −
Y1B

2

2
� ,

where

Y1A = − 1
bX, Y1B = 1

bX ,

Y2A = X2

2b2 − a
b3 X, Y2B = X2

2b2 + a
b3 X . �48�

Substituting directly into the first integral �19� we obtain

A�X� = A�0�e−�X/b−�2�a/b3�X, B�X�

= B�0�e−�b/aX�+�X/b+�2�a/b3�X. �49�

Thus the asymptotic solution to the problem in inner coordi-
nates is
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Y�X� = A�0�e−�X/b−�2�a/b3�X + B�0�e�X/b+�2�a/b3�Xe−b/aX.

�50�

The solution to the original problem �43� assumes the form

y�x� = A�0�e−x/b−�ax/b3
+ B�0�e�−1/���bx/a�+x/b+�ax/b3

. �51�

For completeness, one can compare the above asymptotic
solution with its closed form counterpart

y�x� = C1e�−b+�b2−4a�/2a��x + C2e�−b−�b2−4a��/2a�x. �52�

Expanding the radical in powers of 4a� /b2, we recover the
solution �51� when we include powers of � up to order two.

IV. NONLINEAR EQUATIONS

A. Rayleigh equation

The Rayleigh equation introduced by J.W. Strutt as a
mathematical model for certain problems in acoustics has
been used as a benchmark problem to illustrate the method
of multiple scales �14� as well as the method of renormaliza-
tion group �1,7�. For completeness we formulate the problem
and calculate the hierarchy of particular solutions yi up to
and including terms of order two in �. The Rayleigh oscilla-
tor has the form

ÿ + y = �ẏ�1 −
1

3
ẏ2� . �53�

Expanding the solution y in a series in powers of �, y=y0
+�y1+�2y2+¯ leads to the hierarchy of equations

ÿ0 + y0 = 0, �54�

ÿ1 + y1 = ẏ0 −
1

3
ẏ0

3, �55�

ÿ2 + y2 = ẏ1�1 − ẏ0
2� , �56�

] = ] . �57�

We include here only particular solutions to various or-
ders,

y0 = Aeit + c.c.,

y1 =
1

2
teitA�1 − �A�2� −

i

24
A3e3it + c.c.,

y2 =
1

8
A�1 − 4�A�2 + 3�A�4�t2eit +

1

16
iA��A�4 − 2�teit

+
1

16
iA3��A�2 − 1�te3it +

1

64
A3�3�A�2 − 2�e3it −

1

192
A5e5it

+ c.c.,

where A is a constant complex amplitude. Renormalization
leads to

Z1 = −
1

2
t�1 − �A�2� , �58�

Z2 =
1

8
�1 − 4�A�2 + 3�A�4�t2 +

1

16
i�2 − �A�4�t . �59�

The corresponding cumulants are

Z1 = −
1

2
t�1 − �A�2� , �60�

Z2 −
Z1

2

2
= −

1

4
�A�2�1 − �A�2�t2 +

1

16
i�2 − �A�4�t . �61�

Substituting into the algebraic expression �14� leads to

ln A�t� = ln A�0� + �
1

2
t�1 − �A�2� + �2�−

1

4
�A�2�1 − �A�2�t2

+
1

16
i��A�4 − 2�t� + O��3� . �62�

The above expression leads to an effortless derivation of the
phase of A as follows. Reverting to plane polar coordinates
A=Rei
, relation �62� becomes

ln R�t� = ln R�0� + �
1

2
t�1 − R2� − �21

4
R2�1 − R2�t2 + O��3� ,

�63�


�t� = 
�0� + �2 1

16
�R4 − 2�t + O��3� . �64�

Equation �64� is the phase one would obtain from the ampli-
tude equation derived for example in �7�. Note that Eq. �63�
is an implicit nonlinear algebraic relation for the polar am-
plitude. R can be obtained either by iteration or by resorting
to the implicit function theorem. Then, implicit differentia-
tion can be applied to provide a corresponding amplitude
equation

1

R
dR
dt

= �
1

2
�1 − R2� + O��3� . �65�

This result agrees with the one derived through the standard
RG method �1� or the method of multiple scales �14�.

B. Duffing equation

This is the classical analog of the quantum mechanical
anharmonic oscillator with cubic nonlinearity

ÿ + y + �y3 = 0. �66�

We expand the solution in a power series of � that leads to a
hierarchy of equations

ÿ0 + y0 = 0, �67�

ÿ1 + y1 = − y0
3, �68�

ÿ2 + y2 = − 3y0
2y1, �69�
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ÿ3 + y3 = − 3y0�y0y2 + y1
2� , �70�

] = ] �71�

and the corresponding particular solutions

y0 = Aeit + A�e−it, �72�

y1 =
3

2
iA�A�2teit +

1

8
A3e3it + c.c., �73�

y2 = −
9

8
A�A�4t2eit −

15

16
iA�A�4teit +

9

16
iA3�A�2te3it

−
21

64
A3�A�2e3it +

1

64
A5e5it, �74�

y3 = �45

32
A�A�6t2 +

123

128
iA�A�6t −

9

16
iA�A�6t3�eit

+ �−
81

64
A3�A�4t2 −

117

64
iA3�A�4t +

417

512
A3�A�4�e3it

+ �−
43

512
A5�A�2 +

15

128
iA5�A�2t�e5it +

1

512
A7e7it.

�75�

After renormalization and calculation of the corresponding
cumulants, Eq. �14� leads to

ln A = ln A�0� + it��
3

2
�A�2 − �215

16
�A�4 + �3123

128
�A�6�

+ O��4� . �76�

Reverting to plane-polar coordinates A=Rei
 provides the
following pair of algebraic equations for the polar amplitude
and phase:

ln R�t� = ln R�0� + O��4� , �77�


�t� = 
�0� + ��
3

2
R2 − �215

16
R4 + �3123

128
R6�t + O��4� .

�78�

This demonstrates the constancy of the polar amplitude R
and shows that the phase is obtained in an effortless way.
The above results agree with those derived in �4�.

V. CONCLUDING REMARKS

In this article we introduced an algebraic relation �14� that
emerges naturally when one performs the standard renormal-
ization process, without resorting to secondary parameters.
This relation also forms a first integral of the amplitude Eq.
�13� derived by means of the standard renormalization group
approach �1� for the solution of differential equations involv-
ing multiple time scales. The algebraic relation �14� is ex-
pressed in terms of the Thiele semi-invariants or cumulants
of the eliminant series �Zi�i=1

� . In the case of linear differen-

tial equations this expression simplifies significantly as the
cumulants of the eliminant series �Zi�i=1

� are related to the
cumulants of the secular series �yip�i=1

� through Eq. �17�, cir-
cumventing the need to perform renormalization. For nonlin-
ear problems, Eq. �14� still provides a simple way to calcu-
late the amplitude equation. In general, one still needs to
resort to the solution of an amplitude equation. But this is a
natural solution process of any implicit equation and hence
of Eq. �14�.

We note that the zeroth order solution of an nth order
nonlinear equation depends on n integration constants, which
upon renormalization will lead to n coupled algebraic equa-
tions of the form �14� or equivalently to n coupled amplitude
equations.

Furthermore, it is needless to say that, for a linear equa-
tion, the naive expansion corresponds to the Born approxi-
mation, while the cumulant expansion corresponds to the Ry-
tov approximation as these are applied to problems of wave
propagation in deterministic and random media �15,16�.

It is expected that the formalism inherent in the algebraic
relation �14�, perhaps in line with �17� in terms of differential
operators, will lead to the integration of nonlinear partial
differential equations.
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APPENDIX

When a function Z and its logarithm can be represented in
terms of a power series in � as

Z = 

n=0

�

�n�n

n!
, �0 = 1, ln Z = 


n=1

�

�n�n

n!
, �A1�

then the coefficients �n, known as Thiele semi-invariants or
cumulants �9,10�, are related to the coefficients �n by

�1 = �1,

�2 = �2 − �1
2,

�3 = �3 − 3�1�2 + 2�1
3,

�4 = �4 − 4�1�3 − 3�2
2 + 12�1

2�2 − 6�1
4,

] = ]

or in general

� j = 

ni

�− 1�
ni−1�
 ni − 1� ! �
i
� ��ni

/i!�

ni!
� , �A2�

where the summation of products is over all sets of integers
that satisfy 
iini= j.
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Because the representation we introduced in the text for
the secular series yp does not divide each term by a suitable
factorial, our result can be recovered from the above with the
stipulation �n=ynp /n!, n=0,1 , . . . or �n=Znp /n!, n=0,1 , . . .
depending on the context. Equivalently, and referring to the
notation in the text,

�n = � 1

n!
� �n ln yp

��n ��
�=0

, n = 1,2, . . . , �A3�

and yp=1+�y1p+�2y2p+¯ is the series of secular terms,
with a corresponding expression for the eliminant series.
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